Produkt zum Begriff Data:
-
Practical Python Data Wrangling and Data Quality (McGregor, Susan E.)
Practical Python Data Wrangling and Data Quality , The world around us is full of data that holds unique insights and valuable stories, and this book will help you uncover them. Whether you already work with data or want to learn more about its possibilities, the examples and techniques in this practical book will help you more easily clean, evaluate, and analyze data so that you can generate meaningful insights and compelling visualizations. Complementing foundational concepts with expert advice, author Susan E. McGregor provides the resources you need to extract, evaluate, and analyze a wide variety of data sources and formats, along with the tools to communicate your findings effectively. This book delivers a methodical, jargon-free way for data practitioners at any level, from true novices to seasoned professionals, to harness the power of data. Use Python 3.8+ to read, write, and transform data from a variety of sources Understand and use programming basics in Python to wrangle data at scale Organize, document, and structure your code using best practices Collect data from structured data files, web pages, and APIs Perform basic statistical analyses to make meaning from datasets Visualize and present data in clear and compelling ways , > , Erscheinungsjahr: 202201, Produktform: Kartoniert, Autoren: McGregor, Susan E., Themenüberschrift: COMPUTERS / Databases / Data Mining~COMPUTERS / Programming Languages / Python~COMPUTERS / Desktop Applications / Databases, Fachschema: Datenverarbeitung / Anwendungen / Betrieb, Verwaltung~Programmiersprachen~Data Mining (EDV)~Database~Datenbank~Informatik, Fachkategorie: Unternehmensanwendungen~Data Mining~Datenbanksoftware~Informatik, Fachkategorie: Programmier- und Skriptsprachen, allgemein, Text Sprache: eng, Verlag: O'Reilly Media, Breite: 176, Höhe: 24, Gewicht: 722, Produktform: Kartoniert, Genre: Importe, Genre: Importe, Katalog: LIB_ENBOOK, Katalog: Gesamtkatalog, Katalog: Internationale Lagertitel, Katalog: internationale Titel, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0070, Tendenz: +1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,
Preis: 63.90 € | Versand*: 0 € -
Data Warehouse
Data Warehouse , Zum Werk Ein Data-Warehouse besteht aus unterschiedlichen Datenquellen. Es fasst eine integrierte, themenorientierte und chronologisierte Sammlung an Daten zusammen. Damit wird ein komfortabler Zugriff auf diverse Daten ermöglicht. Das Data-Warehouse bildet deshalb die Grundlage für die Datenökonomie. Nur wer ein solches Data-Warehouse hat und betreiben kann, bleibt ernstzunehmender Wettbewerber im digitalen Zeitalter und kann Daten genau, konsistent, relevant, legal aktuell, akkurat, als "single point of reference, auf einer time to market basis" und einer "need to know basis" für diverse digitale Geschäftsmodelle zur Verfügung stellen. Das Rechtshandbuch erörtert schwerpunktmäßig die rechtlichen Anforderungen eines Data-Warehouses. Es geht insbesondere auf Themen des Datenschutzes, der Informationssicherheit, des Kartellrechts, Open Data, den verschiedenen Rechtsformen bzw. Betreiberrollen, der Blockchaintechnologie und den Haftungsrisiken ein. Dabei werden: technische Hintergründe eines Data-Warehouses verständlich erörtert, praxisrelevante Rechtsfragen beim Betrieb eines Data-Warehouses aufgeworfen und diskutiert und Gestaltungshilfen beim Aufbau und Betrieb eines Data-Warehouses gegeben. Aus dem Inhalt Begriffsbestimmungen Inhaber und Betreiber Datenschutz Kartellrecht Open-Data Informationssicherheit Nutzung von Blockchain Haftung und Versicherung Vorteile auf einen Blick speziell auf die Rechtsprobleme eines Data-Warehouse zugeschnittene Darstellung mit konkreten, praxisorientierten Handlungsempfehlungen Anleitungen für die Planung, Errichtung und das Betreiben eines Data-Warehouse rechtsgebietsübergreifende Antworten und Fragestellungen im Data-Warehouse-Umfeld (Haftung und Versicherung, Blockchain, Informationssicherheit, Open Data, Kartellrecht, Datenschutz, etc.) zahlreiche Leitsätze und Grafiken Zielgruppe Für Unternehmen, im IT- und Datenschutzrecht tätige Rechtsanwältinnen und -anwälte, Gerichte und Datenschutzbehörden, Hochschulen, Verbände, Softwareentwicklerinnen und Softwareentwickler. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen
Preis: 89.00 € | Versand*: 0 € -
Jankowski, Timo: Fußball - Von Big Data zu Smart Data
Fußball - Von Big Data zu Smart Data , Das Thema Big Data ist unaufhaltsam in die Fußballwelt eingezogen und wird mit Sicherheit auch nicht mehr verschwinden. Es wird weiterhin an Bedeutung gewinnen, da die Datenqualität und die praktische Umsetzung dieser Daten bereits zahlreiche beeindruckende Erfolge vorweisen können. Zu Beginn des Buchs wird auf die Problematik des Schwarz-Weiß-Denkens, das im Fußball weit verbreitet ist, eingegangen. Im zweiten Teil rückt dann das Thema Big Data im Fußball in den Vordergrund. Dies geschieht vor allem immer im Hinblick auf die Umwandlung in Smart Data mit vielen praktischen Beispielen, sodass jeder Trainer und Interessierte zahlreiche Anregungen für die eigene Arbeit in der Planung, auf dem Platz und in der Evaluierung bekommt. Zahlreiche Key-Performance-Indikatoren (KPIs) werden unter die Lupe genommen und es wird aufgezeigt, wie Datenanalyse auf dem Weg zum Erfolg helfen kann. Ziel dieses Werks ist es, das Thema Big Data im Fußball zu entmystifizieren, weshalb im letzten Abschnitt die erfolgreiche Qualifikation der Juniorennationalmannschaft von Fidschi für die U20-Weltmeisterschaft 2023 beschrieben wird. Dieses Beispiel zeigt, wie die richtige Mischung aus objektiven Daten und den menschlichen Komponenten in der Praxis zum Erfolg führen kann. Dieses Buch plädiert dafür, die tief verwurzelten Werte und die Ursprünglichkeit des Fußballs unbedingt beizubehalten und zeigt auf, wie sich beide Seiten - Bauchgefühl und Datenanalyse - gewinnbringend miteinander verbinden lassen. Fußball - von Big Data zu Smart Data ist DAS Standardwerk für alle Trainer, die das Thema Big Data angehen wollen und Tipps für die Umsetzung auf dem Platz benötigen. , Bücher > Bücher & Zeitschriften
Preis: 28.00 € | Versand*: 0 € -
Data Driven Controlling
Data Driven Controlling , Den Controllerinnen und Controllern stehen immer mehr interne und externe Daten zur Verfügung, die gemanagt und genutzt werden wollen. Ein modernes, datengetriebenes Controlling weiß, wie diese Ressourcen genutzt und effektiv zur Entscheidungsunterstützung aufbereitet werden. Dieses Buch bietet dazu die Grundlagen und Konzepte. Es richtet sich an alle, die das Controlling durch den Einsatz moderner Data-Analytics- und Machine-Learning-Tools modernisieren möchten. Es dient als Leitfaden, um die vielfältigen Möglichkeiten der datengetriebenen Entscheidungsfindung zu erkunden und sie gewinnbringend in Ihrem Unternehmen einzusetzen. Lösungsvorschläge und Best-Practice-Beispiele runden das Buch ab. Inhalte: Data Governance und die Rolle des Controllings Datengetriebenes Risikocontrolling: Grundlagen, Beispiele, Anforderungen Datengestützte Entscheidungen in Insight Driven Organizations Data-Mining-Verfahren: Anwendung im Beschaffungscontrolling Nutzerzentriertes Controlling-Dashboard für bessere Entscheidungen Nachhaltigkeit: Datenbasierte Messung von Sustainability Performance und Risiken Organisation & IT Neue Möglichkeiten des prozessbezogenen Datenmanagements für das Controlling , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen
Preis: 89.99 € | Versand*: 0 €
-
Was bedeuten Data Science und Data Engineering?
Data Science bezieht sich auf die Analyse und Interpretation von Daten, um Erkenntnisse und Muster zu gewinnen, die bei der Lösung von Problemen und der Unterstützung von Entscheidungsprozessen helfen. Data Engineering hingegen bezieht sich auf die Entwicklung und Verwaltung von Dateninfrastrukturen, um sicherzustellen, dass Daten effizient erfasst, gespeichert, verarbeitet und analysiert werden können. Data Engineering legt den Fokus auf die technische Seite der Datenverarbeitung, während Data Science sich auf die Analyse und Interpretation der Daten konzentriert.
-
Was bietet bessere Chancen auf dem Arbeitsmarkt: die Entwicklung einer Data Analytics App oder Web Development?
Es ist schwierig, eine eindeutige Antwort zu geben, da dies von verschiedenen Faktoren abhängt, wie zum Beispiel dem aktuellen Bedarf auf dem Arbeitsmarkt, den individuellen Fähigkeiten und Erfahrungen des Einzelnen sowie den spezifischen Anforderungen der jeweiligen Branche. Data Analytics ist ein wachsender Bereich, da Unternehmen verstärkt datengetriebene Entscheidungen treffen möchten. Auf der anderen Seite ist Webentwicklung nach wie vor sehr gefragt, da Unternehmen eine starke Online-Präsenz benötigen. Es kann daher sinnvoll sein, die Nachfrage in Ihrer Region und Ihre persönlichen Interessen und Fähigkeiten zu berücksichtigen, um die besten Chancen auf dem Arbeitsmarkt zu ermitteln.
-
Sind "data" und "data" beim USB-Kabel TX und RX?
Nein, "data" und "data" beziehen sich nicht auf die TX (Transmit) und RX (Receive) Pins beim USB-Kabel. Beim USB-Kabel gibt es vier Pins: VCC (Stromversorgung), GND (Masse), D+ (Datenleitung) und D- (Datenleitung). Die TX- und RX-Pins werden normalerweise bei seriellen Kommunikationsschnittstellen wie UART verwendet.
-
Kann man mit Wirtschaftsinformatik Data Scientist oder Data Analyst werden?
Ja, mit einem Studium der Wirtschaftsinformatik kann man sowohl Data Scientist als auch Data Analyst werden. Wirtschaftsinformatik vermittelt Kenntnisse in den Bereichen Informatik und Betriebswirtschaft, die für diese Berufe relevant sind. Zusätzliche Weiterbildungen oder Spezialisierungen in den Bereichen Data Science oder Data Analytics können jedoch von Vorteil sein.
Ähnliche Suchbegriffe für Data:
-
G DATA VPN
G DATA VPN aktivieren: Schritt-für-Schritt Anleitung für sicheres Surfen Erschreckende 30 Prozent der Internetnutzer berichten, dass ihre Online-Konten innerhalb eines Jahres von Dritten kompromittiert wurden. Diese alarmierende Statistik zeigt, wie wichtig es ist, G DATA VPN zu aktivieren und die eigene Online-Sicherheit zu gewährleisten. Tatsächlich bietet G DATA, ein seit 1985 etabliertes deutsches IT-Sicherheitsunternehmen, eine zuverlässige VPN-Lösung mit modernster 256-bit AES-Verschlüsselung - dieselbe Technologie, die auch von US-Regierungsbehörden für streng geheime Dateien verwendet wird. Mit fast 2.000 Hochgeschwindigkeits-Servern an 75 Standorten weltweit ermöglicht G DATA VPN dabei nicht nur sicheres, sondern auch schnelles Surfen. Besonders wichtig ist der Schutz beim Surfen in öffentlichen WLAN-Netzwerken, wo Datenspionage ein ernsthaftes Risiko darstellt. In dieser Sch...
Preis: 49.95 € | Versand*: 0.00 € -
DC1 DATA COLLECTOR
DC1 DATA COLLECTOR
Preis: 295.99 € | Versand*: 0.00 € -
Raw Data (VR)
Raw Data (VR)
Preis: 3.17 € | Versand*: 0.00 € -
DC1 DATA COLLECTOR
DC1 DATA COLLECTOR
Preis: 296.00 € | Versand*: 0.00 €
-
Was ist der Unterschied zwischen Big Data und Smart Data?
Big Data bezieht sich auf große Mengen von Daten, die aus verschiedenen Quellen stammen und oft unstrukturiert sind. Smart Data hingegen bezieht sich auf die Analyse und Nutzung dieser Daten, um wertvolle Erkenntnisse und Handlungsempfehlungen zu generieren. Smart Data konzentriert sich auf die Auswahl und Verarbeitung relevanter Daten, um konkrete Probleme zu lösen oder Entscheidungen zu unterstützen.
-
Welche Förderungsmaßnahme gibt es für Data Analysts bzw. Data Scientists?
Es gibt verschiedene Förderungsmaßnahmen für Data Analysts und Data Scientists, je nach Land und Organisation. Zum Beispiel bieten Universitäten und Forschungseinrichtungen Stipendien und Forschungsprojekte an. Unternehmen können auch Weiterbildungsprogramme und Schulungen für ihre Mitarbeiter anbieten. Darüber hinaus gibt es auch staatliche Förderprogramme und Stipendien für Studierende und Forscher in diesem Bereich.
-
Warum Data Scientist?
Warum Data Scientist? Data Scientist sind gefragt, weil sie komplexe Daten analysieren und interpretieren können, um fundierte Entscheidungen zu treffen. Sie spielen eine entscheidende Rolle bei der Optimierung von Geschäftsprozessen und der Entwicklung innovativer Produkte. Zudem bieten Data Science Karrieremöglichkeiten in verschiedenen Branchen und ermöglichen es, mit modernsten Technologien und Tools zu arbeiten. Nicht zuletzt ist Data Science ein spannendes und dynamisches Feld, das ständig neue Herausforderungen und Möglichkeiten bietet.
-
Was heißt data?
Was heißt data? Data ist der englische Begriff für Daten, also Informationen oder Fakten, die gesammelt und analysiert werden können. Daten können in verschiedenen Formen vorliegen, wie zum Beispiel Zahlen, Texte, Bilder oder Videos. Sie sind essentiell für Entscheidungsprozesse in Unternehmen, Wissenschaft und vielen anderen Bereichen. Die Analyse von Daten ermöglicht es, Muster, Trends und Zusammenhänge zu erkennen und fundierte Schlussfolgerungen zu ziehen. In der heutigen digitalen Welt spielt die Verarbeitung und Interpretation von Daten eine immer größere Rolle.
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.